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Abstract—Robotic foundation models trained on large-scale
manipulation datasets have shown promise in learning generalist
policies, but they often overfit to specific viewpoints, robot arms,
and especially parallel-jaw grippers due to dataset biases. To
address this limitation, we propose Cross-Embodiment Interface
(CEI), a framework for cross-embodiment learning that enables
the transfer of demonstrations across different robot arm and
end-effector morphologies. CEI introduces the concept of func-
tional similarity, which is quantified using Directional Chamfer
Distance. Then it aligns robot trajectories through gradient-based
optimization, followed by synthesizing observations and actions
for unseen robot arms and end-effectors. In experiments, CEI
transfers data and policies from a Franka Panda robot to 16
different embodiments across 3 tasks in simulation, and supports
bidirectional transfer between a UR5+AG95 gripper robot and a
UR5+Xhand robot across 6 real-world tasks, achieving an average
transfer ratio of 82.4%. Finally, we demonstrate that CEI can also
be extended with spatial generalization and multimodal motion
generation capabilities using our proposed techniques. Project
website: https://cross-embodiment-interface.github.io/.

Index Terms—Learning from demonstration, imitation learn-
ing

I. INTRODUCTION

EMERGING robotic foundation models are built upon
scaling laws [1] and fueled by the growing availabil-

ity of large-scale real-world manipulation datasets [2], [3].
However, these datasets often suffer from significant distribu-
tional imbalances, leading models to overfit to specific camera
viewpoints and robot embodiments [4]. For instance, OXE [5]
aggregates data from 60 datasets spanning multiple robotic
platforms, yet remains heavily skewed toward Franka and
xArm robots, with nearly all end-effectors limited to parallel
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Fig. 1. Cross-embodiment interface. CEI enables cross-embodiment trans-
fer between different robots by synthesizing demonstrations from a source
embodiment to a target embodiment. We transfer data and policies from a
Franka Panda robot to 16 target embodiments across 3 tasks in simulation,
and demonstrate bidirectional transfer between a UR5+AG95 gripper and
a UR5+Xhand setup across 6 real-world tasks. We also showcase CEI’s
compatibility with spatial generalization and multimodal motion generation.

grippers. Such biases limit the models’ ability to general-
ize [6], especially when faced with embodiment variations.

To mitigate the embodiment biases, approaches such as
Mirage [7] and RoVi-Aug [4] employ techniques like cross-
painting and generative models to synthesize visual observa-
tions, creating the illusion that the source robot is performing
the task under test-time conditions. While these methods
enable zero-shot deployment by bridging domain and embod-
iment gaps, their applicability is largely restricted to scenarios
involving parallel-jaw grippers and Operational Space Control
(OSC). These preconditions present significant challenges for
transfer to more complex embodiments, such as multi-fingered
dexterous hands. In fact, the limitation is further compounded
by the scarcity of dexterous hand data [8], which continues to
hinder the development of generalizable policies across diverse
robot embodiments.

Intriguingly, the underlying similarity in manipulation
strategies between parallel-jaw grippers and dexterous hands
suggests the feasibility of such cross-embodiment learning.
For instance, when humans grasp a bottle, they often adopt
a gripper-like pose that naturally promotes force closure. This
motivates the question of whether such shared manipulation
affordances can be systematically exploited to enable effective
transfer across distinct end-effector morphologies.

https://cross-embodiment-interface.github.io/
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To enable policy learning across heterogeneous robot em-
bodiments, we propose Cross-Embodiment Interface (CEI),
a unified framework for cross-embodiment data synthesis.
CEI leverages a novel notion of functional similarity, which
captures shared interaction behaviors across different end-
effectors, to align robot motions from a source embodiment
to a target embodiment. This is accomplished by quantifying
this similarity using the Directional Chamfer Distance [9]
between embodiments’ functional representations, aligning
trajectories via gradient-based optimization, and synthesizing
corresponding observations and actions for the target robot.
Through extensive experiments in both simulation and real
world, we show that CEI effectively transfers demonstrations
and policies from a source robot equipped with a parallel-
jaw gripper to a target robot with a five-fingered dexterous
hand and vice versa, with an overall transfer ratio of 82.4%.
Furthermore, we demonstrate that CEI is compatible with
spatial generalization and support multimodal data generation
using our extended techniques.

Our contributions are summarized as follows:
• We propose a novel concept of functional similarity based

on Directional Chamfer Distance, coupled with gradient-
based trajectory alignment, to transfer task-relevant ma-
nipulation behaviors across embodiments.

• We propose a general pipeline that leverages embodiment
information to augment both observations and actions, en-
abling the synthesis of point cloud–based demonstrations
across heterogeneous robots.

• Experiments on 16 embodiments over 3 simulation tasks
and bidirectional transfers over 6 real-world tasks demon-
strate CEI’s effectiveness on cross-embodiment learning.
Furthermore, we showcase that CEI can be extended with
spatial generalization and multimodal motion generation
for diverse data synthesis.

II. RELATED WORK

A. Data Generation for Robotic Manipulation
While recent imitation learning methods have exhibited

impressive performance [10], [11], the high cost of collecting
expert demonstrations poses significant challenges to scal-
ability and real-world deployment. To mitigate this, online
data generation approaches adapt existing demonstrations to
novel object configurations and produce plausible interaction
trajectories via rollouts in high-fidelity physics simulators [12].
Although these methods preserve physical realism, they tend to
be computationally intensive, and challenging to apply directly
in real-world settings. In contrast, offline data generation
synthesizes new demonstrations from existing datasets through
trajectory transformations [13] or generative model-based vi-
sual augmentations [14]. CEI focuses on cross-embodiment
transfer through offline data generation, but addresses the chal-
lenge of extreme differences between end-effectors, enabling
the learning of dexterous hand policies from parallel gripper
data.

B. Cross-embodiment Learning
Prior work has explored bridging the embodiment gap

through various strategies, including space alignment [15]–

[17], cross-painting [4], [7], dynamics modeling [18], and
reward model learning [19]. Other approaches incorporate em-
bodiment information directly into the policy and train across
a set of embodiments with varying kinematics and dynamics,
demonstrating generalization to unseen morphologies within
the training distribution [20]–[22]. Recently, many efforts
have focused on collecting cross-embodiment datasets [2],
[5], [23], which have been shown to generalize effectively
across embodiments [24], [25]. In contrast to these efforts, our
work addresses extreme cross-embodiment data generation,
specifically demonstration transfer between a parallel gripper
and a dexterous hand, without requiring embodiment-specific
training data.

III. PROBLEM FORMULATION

A visuomotor policy π : O → A maps visual observations
o ∈ O to actions a ∈ A. In imitation learning, such policies are
typically trained from a dataset of demonstrations D collected
on a particular embodiment E. We represent each demonstra-
tion DE,s0 ⊆ D as a trajectory of observation-action pairs,
conditioned on an initial task state s0 and robot embodiment
E: DE,s0 = ((o0, a0), (o1, a1), . . . , (oL−1, aL−1) | s0, E) .

Each observation ot = (opcd
t , oarm

t , oee
t ) consists of a point

cloud and the proprioceptive states of the robot arm and end-
effector, while each action at = (aarm

t , aee
t ) specifies joint

position targets for robot arm and end-effector. Our objective
is to generate a corresponding demonstration D̂E′,s0 for a
new target embodiment E′ potentially differing in morphology
and kinematics, starting from the same initial task state s0:
D̂E′,s0 = ((ô0, â0), (ô1, â1), . . . , (ôL−1, âL−1) | s0, E′) . Un-
like prior work that focuses solely on the initial state or short
trajectory segments, we aim to produce full demonstration
trajectories that are executable on the target embodiment. Each
embodiment E includes structural specifications such as joint
limits, robot meshes and kinematic chains. We assume access
to standardized robot description files (e.g., URDF and XML),
which provide this information and allow embodiment-specific
adaptation of actions and observations.

IV. METHOD

To generate demonstrations for a new embodiment, CEI
first defines the functional representations of both the source
and target embodiments and employs the Directional Chamfer
Distance to quantify the functional similarity between the two
embodiments (Section IV-A). Leveraging the source demon-
strations, functional representations and the metric, CEI aligns
the robot trajectories from the source embodiment to the
target embodiment (Section IV-B). Finally, CEI synthesizes
corresponding observations and actions based on the aligned
trajectories, obtaining the demonstrations for the target em-
bodiment (Section IV-C). An overview of the full pipeline is
illustrated in Fig. 2.

A. Functional Similarity between Embodiments

While two embodiments may differ significantly in mor-
phology and kinematics, they can nonetheless exhibit similar
object interaction behaviors. For example, in a pick-up task,
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Fig. 2. Overview of the pipeline. Given a source dataset, a source embodiment, and a target embodiment, we first define functional representations as sets
of points with associated directions on both embodiments. We then compute functional similarity using the negative Directional Chamfer Distance between
these representations. Trajectory alignment is performed by sequentially optimizing the functional similarity for each trajectory slice. Finally, we synthesize
target actions with next joint positions and generate target observations by augmenting source point clouds with points sampled from the target embodiment.
The viridis colormap is used to illustrate the temporal progression of the trajectory of functional representations.

a dexterous hand may grasp an object from opposing sides
using the thumb and other four fingers—a strategy that is
functionally analogous to the symmetric grasp of a parallel
gripper. In this section, we propose a method to formally
quantify this functional similarity between embodiments.

1) Functional Representation: We represent an embodi-
ment’s interaction feature through a set of point-direction
pairs X = {(pi, ni)}i=0,1,...,N , referred to as the functional
representation. As shown in Fig. 2, the points {pi} lie on
the embodiment’s surface and reflect potential contact areas
with objects. The associated directions {ni} are automatically
computed as the surface normal in the vicinity of {pi}. All
point-direction pairs are transformed to the world frame via
forward kinematics, ensuring alignment happens in a common
frame across embodiments. While this concept is inspired by
affordance [26] which captures potential interaction sites on
the object, we instead focus on the embodiment, emphasizing
how the end-effector interacts with the environment.

2) Directional Chamfer Distance: To quantify the simi-
larity between two functional representations, we adopt the
Directional Chamfer Distance (DCD), which jointly con-
siders spatial proximity and directional alignment between
point sets. Specifically, given functional representations X =
{(pi, ni)}Ni=1 and X ′ = {(p′j , n′

j)}N
′

j=1 for the source and
target embodiments respectively, DCD is defined as:

DCD(X,X ′) =
1

N

N∑
i=1

min
j

(
∥pi−p′j∥2−λ·⟨ni, n

′
j⟩
)

+
1

N ′

N ′∑
j=1

min
i

(
∥p′j−pi∥2−λ·⟨n′

j , ni⟩
)
,

(1)

where λ is a weighting factor balancing spatial and directional
terms. This formulation ensures that each point-direction pair
in one set is matched to its most similar counterpart in the

other and calculates the distance of two sets. We define the
negative DCD as the measure of functional similarity, which
increases as the functional representations of two embodiments
become more consistent.

B. Trajectory Alignment

To bridge the embodiment gap, we leverage the defined
functional similarity to align the joint (proprioceptive) trajec-
tories between two robots. Given a source embodiment and
an associated demonstration, we first compute the trajectory
of its functional representation {Xt}L−1

t=0 using a differentiable
forward kinematics module FK, where Xt = FKE(o

arm
t , oee

t ).
For each frame t, we initialize the target embodiment’s joint
configuration q′t as a set of learnable variables and calculate
the corresponding functional representation X ′

t = FKE′(q′t).
We then optimize functional similarity between Xt and X ′

t

using gradient descent:

min
q′t

Lalign(q
′
t) = w1DCD(Xt, X

′
t) + w2L(q′t), (2)

where L(q′t) penalizes the out-of-range joint configuration, and
w1, w2 are weighting factors. Rather than optimizing each
frame independently, we treat the process as a sequential opti-
mization problem. Specifically, the joint configuration at frame
t + 1 is initialized using the optimized result from frame t:
q
′(0)
t+1 ← q̂t, where q

′(0)
t+1 represents the initial joint configuration

at t+ 1 and q̂t denotes the optimized joint configuration at t.
This strategy not only accelerates convergence due to the small
variation between adjacent frames, but also ensures temporal
consistency in the generated trajectory.

C. Observation and Action Generation

1) Action generation: We define the action at each timestep
as the target embodiment’s joint configuration at the next
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Fig. 3. Tasks and embodiments for simulation evaluation. We investigate 3
tasks and 16 embodiments, which are combinations of 4 robot arms (UR5e,
IIWA, Kinova3 and Franka Panda) and 4 end-effectors (FourierRighthand,
InspireRightHand, FourierLefthand and RobotiqThreeFinger gripper).

frame: at = q̂t+1. Since the embodiment may not achieve
the target position in time, we adopt a closed-loop control
strategy during execution, where the embodiment continuously
applies at until its current joint configuration reaches the target
position.

2) Observation generation: The proprioceptive observation
of the target embodiment is directly derived from the aligned
trajectory: (ôarm

t , ôee
t ) = q̂t. To synthesize the point cloud, we

first remove points that lie outside the defined workspace,
and mask any point that falls within a distance threshold τ
(e.g., 5 mm) of the source robot. This proximity is calculated
using the minimum Euclidean distance to a uniformly sampled
point cloud derived from the robot’s mesh. Next, we synthesize
the point cloud for the target embodiment by first accessing
target robot description file and then sampling points across
the robot’s mesh. Both the cropping and augmentation steps
are conditioned on the current proprioceptive state q̂t. Finally
we apply Farthest Point Sampling (FPS) to downsample the
point cloud to a fixed number (1024). During inference, the
same process is applied to ensure consistency between the
synthesized observations and those encountered at test time.

V. EXPERIMENTAL SETUP

A. Implementation Details

To construct the robot description, we utilize the XML
files of the robot arms and end-effectors. The points of
functional representation are sampled from the finger pad
meshes, and their associated directional vectors are generated
using TorchSDF. For efficient trajectory alignment, we employ
pytorch kinematics as a batch forward kinematics engine,
enabling highly parallelized computations. Optimization is
performed with a maximum of 300 steps at each timestep.
Early stopping is triggered if the alignment loss Lalign does not
improve for 10 consecutive steps. We empirically determine
that setting the weighting factor λ = 0.5, and weights w1 = 1,
w2 = 1 yields robust performance across all tasks.

Fig. 4. Left: Setup and associated objects in real-world experiments. Right:
Real-world tasks. We evaluate transfer from the AG95 gripper to the Xhand
on PushCube, OpenDrawer, and PlaceBird, and from the Xhand to the AG95
gripper on PickCup, PackageBread, and InsertFlower.

B. Policy Training

We utilize 3D Diffusion Policy [11] to evaluate the synthe-
sized data. The input consists of the current joint positions of
both the robot arm and end-effector, along with a preprocessed
point cloud of size [1024, 3]. The policy outputs target joint
positions. We set the observation horizon to To = 2, action
prediction horizon to Tp = 16, and action execution horizon to
Ta = 8, following the settings in [11]. The model is trained for
3000 epochs using the AdamW optimizer with a learning rate
of 1× 10−4 and a 500-step warmup for training stabilization.
All experiments are conducted on a single RTX 4090 GPU.

C. Evaluation Setup

1) Simulation: We evaluate cross-embodiment transfer and
visuomotor policy learning in simulation using 3 manipulation
tasks and 16 robot embodiments (combinations of 4 arms and
4 end-effectors) from robosuite [27] (as shown in Fig. 3).
Demonstrations collected on a Franka Panda via teleoperation
are transferred to target embodiments using CEI. We evaluate
transferred trajectories via simulation replay and train DP3
policies on the synthesized data, measuring performance over
20 trials with three seeds.

2) Real world: In real world deployment, demonstrations
are collected via keyboard teleoperation on a UR5 arm, with
RGB-D data captured by a RealSense L515 to generate scene
point clouds, as shown in Fig. 4 (left). DP3 policies are trained
on CEI-generated data and evaluated over 10 trials per task.
We evaluate transfer between the AG95 gripper and Xhand on
6 real-world tasks (Fig. 4 right):

• PushCube. A cube is placed on the table. The robot must
approach and align its end-effector to securely enclose the
cube, then push it 20 cm to the right.

• OpenDrawer. A drawer is positioned on the left side of
the table. The robot moves toward the handle, inserts its
fingertip, and pulls it to the right by about 10 cm.

• PlaceBird. A toy bird is positioned on the left side of
the table, while a box is fixed on the right. The robot
approaches, grasps the bird stably, moves it over the box,
lowers it, and places the bird inside.

• PickCup. A cup is placed near the center of the table.
The robot approaches, grasps the cup, and lifts it about
5 cm from the surface.



5

TABLE I
FULL EVALUATION ACROSS TASKS AND EMBODIMENT COMBINATIONS IN SIMULATION.

Tasks OpenDrawer PickCube StackCube

Grippers / Robot Arms UR5e IIWA Kinova3 Panda UR5e IIWA Kinova3 Panda UR5e IIWA Kinova3 Panda

FourierRightHand 100 100 100 100 81 72 69 79 53 38 37 34
InspireRightHand 91 87 87 84 50 45 33 43 24 16 12 15
FourierLeftHand 100 96 98 100 88 83 81 79 57 47 50 47

RobotiqThreeFinger 78 91 93 93 19 31 41 52 0 0 5 9

• PackageBread. A toaster with baked bread is placed on
the right side of the table, with a bag fixed on the left. The
robot approaches the toaster, picks up the bread, moves
it above the bag, and deposits the bread inside.

• InsertFlower. A bouquet of flowers is placed on the right
side of the table, and a vase is fixed on the left. The
robot approaches, grasps the bouquet, rotates and moves
it above the vase, then inserts and releases it.

For the first three tasks, we collect 25 AG95 demonstrations
and transfer to Xhand; for the latter three, we collect data with
Xhand and transfer to AG95.

VI. RESULTS

A. Simulation Results

1) Gripper-to-hands transfer: To evaluate whether CEI
effectively bridges the extreme embodiment gap from parallel-
jaw grippers to dexterous multi-fingered hands, we validate
the synthesized data by replaying the robot trajectory online,
initialized with the same state when collecting the data.
Table I presents the comprehensive evaluation of 16 different
embodiments. The results indicate that despite variations in
kinematics and morphology, CEI is capable of bridging the
cross-embodiment gap by leveraging functional similarity. We
further observe that transfer difficulty correlates with contact
richness. While OpenDrawer involves simple interactions,
PickCube requires stable grasp acquisition, and StackCube
entails sequential contact maintenance. These contact-rich
scenarios amplify the susceptibility of our geometry-based
synthesis to physical disturbances (e.g., slippage), explaining
the observed performance degradation. Analyzing performance
across end-effectors, we find that the FourierRightHand and
FourierLeftHand consistently achieve the highest success rates
across all three tasks. In contrast, the InspireRightHand expe-
riences an average performance drop of approximately 40%.
Although the RobotiqThreeFinger exhibits minimal loss in
OpenDrawer, it struggles with StackCube as kinematic con-
straints force a transition from stable ‘finger-pad’ grasping to a
low-contact ‘fingertip’ strategy, thereby reducing manipulation
reliability.

2) Ablation study on cross-embodiment techniques: Table II
presents an ablation study to investigate the key compo-
nents that enable CEI to achieve cross-embodiment transfer.
We compare CEI against two baselines: (1) Binary Man-
ual Specification (BMS) generates end-effector motions by
linearly interpolating between manually specified open and
close poses, while constraining the end-effector to match
the gripper aperture of the source embodiment, and (2) CEI

without Direction removes directional information and uses
only positional features for functional representation. We use a
subset of embodiments: Emb. 1 = UR5e + FourierRightHand,
Emb. 2 = IIWA + InspireRightHand, Emb. 3 = Kinova3 +
FourierLeftHand, and Emb. 4 = Panda + RobotiqThreeFinger.
The results show that CEI without Direction achieves an aver-
age success rate of only 32%, only half of CEI. Although it is
still capable of completing the OpenDrawer task, it struggles
with object grasping tasks, highlighting the critical role of
directional information for grasp motions. We also observed
that BMS failed in PickCube and StackCube because linear
interpolation between manually defined poses often yields
failed grasps. Additionally, kinematic discrepancies (e.g., end-
effector frame offsets) caused frequent failures in OpenDrawer,
rendering BMS inferior to CEI even when the degree of
opening were explicitly constrained to be the same.

TABLE II
ABLATION STUDY ON CROSS-EMBODIMENT TECHNIQUES.

Task Method Emb. 1 Emb. 2 Emb. 3 Emb. 4 Avg.

OpenDrawer
BMS 80 92 87 64 81
CEI w/o Dir. 84 100 91 100 94
CEI (Ours) 100 87 98 93 95

PickCube
BMS 0 0 0 0 0
CEI w/o Dir. 7 2 0 0 2
CEI (Ours) 81 45 81 52 65

StackCube
BMS 0 0 0 0 0
CEI w/o Dir. 0 0 0 0 0
CEI (Ours) 53 16 50 9 32

3) Sensitivity of functional representation: To evaluate the
impact of different functional representation selections on
transfer performance, we compare three variants: (1) Standard,
which spans the entire finger pad to provide full coverage and
is used across main experiments; (2) Reduced, which is limited
to a subset of points near the center of the finger pad; and (3)
Randomly Dropped (Rand. Drop.), where a subset of points
is randomly removed from the full representation. We transfer
20 demonstrations with above three selections in the PickCube
task using FourierRightHand and evaluate the success rate. As
shown in Table III, although the three selections differ, their
success rates remain comparable, suggesting that CEI is robust
to such variations and exhibits low sensitivity to the choice of
functional representation.

4) Policy evaluation: Table IV presents the policy eval-
uation results using synthesized cross-embodiment data. We
observe that CEI achieves an average success rate of 62%,
suggesting that the synthesized data effectively captures crit-
ical behaviors such as reaching the target position, grasping,
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Fig. 5. Qualitative evaluation. Left: Transfer from AG95 to Xhand in PushCube, OpenDrawer, and PlaceBird. Right: Transfer from Xhand to AG95 in
PickCup, PackageBread, and InsertFlower. Manipulations of source policies are shown on the top rows, transferred ones on the bottom rows.

TABLE III
SENSITIVITY ANALYSIS OF FUNCTIONAL REPRESENTATIONS.

Functional
Representation

Standard Reduced Rand. Drop.

Success Rate 17/20 18/20 16/20

and releasing, even without additional refinement or selection.
We further compare CEI against two baselines: (1) No Aug-
mentation, where the policy is trained solely on observations
from source demonstrations, and (2) CEI without Inference
Augmentation, where the policy uses raw observations during
inference without additional augmentation. Policies trained
without any augmentation fail to complete the tasks, demon-
strating the necessity of targeted data augmentation for cross-
embodiment generalization. Additionally, removing Inference
Augmentation results in a 22% drop in success rate. This
performance degradation arises due to the partial and noisy
observations during inference.

TABLE IV
POLICY EVALUATION ON SYNTHESIZED DATA GENERATED BY CEI .

Task Method Emb. 1 Emb. 2 Emb. 3 Emb. 4 Avg.

OpenDrawer
No Aug. 0 0 0 0 0
CEI w/o Inf. Aug. 100 79 32 64 69
CEI (Ours) 100 90 100 90 95

PickCube
No Aug. 0 0 0 0 0
CEI w/o Inf. Aug. 42 26 38 10 29
CEI (Ours) 79 68 68 23 60

StackCube
No Aug. 0 0 0 0 0
CEI w/o Inf. Aug. 36 10 44 0 23
CEI (Ours) 55 16 52 0 31

Source (ref.) 100 / 100 / 97 99

B. Real-world Results
1) Bidirectional transfer: Table V demonstrates the bidi-

rectional transfer capabilities of CEI on real-world tasks. We
compare policies trained on synthesized data and deployed on
the target embodiment against those trained on source data
and deployed on the source embodiment. Results show that
for simple tasks such as PushCube, CEI enables transfer from
a parallel-jaw gripper to a dexterous hand without perfor-
mance loss. Failures in tasks like OpenDrawer and PlaceBird
are primarily due to challenges in dexterous contacts, such
as fingers slipping off drawer handles. In transfers from a
dexterous hand to a parallel gripper, CEI achieves similar
performance. However, InsertFlower remains exceptionally
challenging since the thin geometry of the flower stem makes it
prone to slippage, leading to low success rates for both source
and target embodiments. Overall, CEI achieves an average
success rate of 70% across six tasks, with a transfer ratio
(success rate of CEI divided by that of the source embodiment)
of 82.4%. Qualitative evaluation across 6 tasks is shown in
Fig. 5.

TABLE V
REAL-WORLD EVALUATION.

AG95 → Xhand

Method PushCube OpenDrawer PlaceBird Average

CEI (Ours) 10/10 8/10 7/10 8.3/10
Source 10/10 10/10 10/10 10/10

Xhand → AG95

Method PickCup PackageBread InsertFlower Average

CEI (Ours) 6/10 9/10 2/10 5.7/10
Source 8/10 9/10 4/10 7/10

2) Time cost of transfer: To study how efficient the data
generation process is, we evaluate the efficiency of CEI ’s
data generation by measuring the time required to synthesize
100, 200, 300 and 400 demonstrations. Given the substantial
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Fig. 6. Spatial generalization. Left: Experimental setup and task configuration, where each anchor is spaced 20 cm apart. Around each anchor, we sample
a 10 × 10 grid within the range [−8 cm, 8 cm] for data generation. Middle: Our approach enables the Xhand to press the button across most of the table
surface. Right: Evaluation results on the 10 anchors. Each anchor is evaluated over 5 trials, with the results distinguished by different colors.

cost of collecting large-scale real-world demonstrations, we
construct larger datasets by replicating a set of 25 collected
trajectories through duplication at ratios of 4×, 8×, 12×,
and 16×, respectively. We compare CEI with MimicGen [12]
and DemoGen [13] on datasets with an average episode
length of 105 steps. For MimicGen, we estimate time by
multiplying the replay duration of each source trajectory
by the number of generated demonstrations, and adding 20
seconds per trajectory for manual object resets, following [13].
Table VI presents the time required to generate those numbers
of demonstrations. Results show that CEI requires significantly
less time than MimicGen, which highly depends on online
execution. DemoGen generates hundreds of demonstrations in
one second, while CEI requires several minutes since it utilizes
gradient-based optimization.

TABLE VI
TIME COST FOR GENERATING REAL-WORLD DEMONSTRATIONS.

100 Demos 200 Demos 300 Demos 400 Demos

MimicGen 6.4 h 12.8 h 19.2 h 25.6 h
DemoGen 0.29 s 0.54 s 0.84 s 1.14 s

CEI (Ours) 2.5 min 2.9 min 3.3 min 3.6 min

VII. BROADER APPLICATIONS

A. Spatial Generalization

1) Spatial augmentation: CEI inherently facilitates spatial
generalization, enabling the generation of diverse demonstra-
tions across the entire workspace from only a single collected
trajectory. Given a spatial transform Ti which encapsulates the
possible translational or rotational offset of the objects, we first
apply it to the functional representation trajectory:

X̃t = Xt + L(t)(Ti(Xt)−Xt), t = 0, 1, . . . , L− 1, (3)

where L(t) = min( t
0.8L , 1) is the clipped linear growth,

ensuring that the generated demonstrations share an initial
state while diverging to different terminal states by inter-
polation. The target embodiment is subsequently aligned to
the augmented trajectory {X̃t}L−1

t=0 through the standard CEI
optimization procedure. The augmented point cloud is then
obtained by applying Ti to the object point cloud and syn-
thesizing the robot point cloud according to the augmented
trajectory.

Fig. 7. Multimodality of CEI. CEI generates two different manipulation
motions in OpenDrawer task from the same demonstration.

2) Press the button anywhere on the table: We assess the
spatial generalization of CEI in the PressButton task. Starting
from a single demonstration collected with AG95, we generate
1,000 demonstrations across 10 anchors, where each anchor
samples a 10×10 grid within the range [−8 cm, 8 cm] (Fig. 6,
left). We then train DP3 and evaluate it on each anchor position
for 5 trials. As illustrated in Fig. 6 (middle and right), our
approach extends the policy to press the button over a wide
area of the table, rather than being limited to the original
position. Moreover, we observe that performance on the left
side is better than on the right, likely because the camera is
positioned to the right of center and oriented toward the left.

B. Multimodal Motion Generation

In previous experiments, we observed that varying the initial
joint configuration produces different aligned trajectories. For
example, when transferring a grasp motion from a gripper to
a dexterous hand, the resulting pose of the dexterous hand
remains valid even if rotated by 180◦ around the heading
direction. To exploit such multimodality, we introduce an
initialization strategy designed for enhancing data diversity.

1) Elite-based initialization strategy (EIS): Instead of re-
lying on random joint configurations, we uniformly sample
candidate configurations from the joint space and rank them
according to their functional similarity with the functional
representation of the source embodiment’s initial configura-
tion. The top 10% of these candidates are then selected,
and their mean configuration is used as the initialization.
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Subsequently, we proceed with the original process of CEI
to obtain the aligned trajectory and synthesize corresponding
demonstrations.

2) Bimodal motion in OpenDrawer: We evaluate the exten-
sion in OpenDrawer task. As shown in Fig. 7, CEI generates
2 different patterns that successfully open the drawer. Since
we only manipulate the initialization and CEI proceeds the
trajectory sequentially, the aligned trajectories remain tempo-
rally consistent while allowing for diverse motion patterns. We
further train DP3 on 25 demonstrations with either an arbitrary
motion pattern or a 1:1 mixture of patterns. As reported in
Table VII, the multimodality has no adverse impact on task
success.

TABLE VII
SUCCESS RATES OF DIFFERENT TRAINING RECIPES.

Pattern 1 Pattern 2 Mixture of Pattern 1&2

Success Rate 8/10 7/10 7/10

VIII. CONCLUSION AND DISCUSSION

In this letter, we introduce CEI, a cross-embodiment frame-
work that leverages functional similarity and automated data
synthesis to transfer policies across diverse robots in both
simulation and the real world. Beyond standard manipulation,
CEI supports spatial generalization and multimodal motion
generation, providing a versatile foundation for scalable robot
learning. While our current scope is point cloud-based cross-
embodiment learning, preliminary results suggest our work
also holds potential for RGB-based observations, as shown on
our project website https://cross-embodiment-interface.github.
io/. Although CEI can synthesize hundreds of demonstrations
in parallel within minutes, applying it to large-scale datasets
remains an open direction that could further advance generalist
policy learning. In addition, the current reliance on visual-
kinematic inputs limits the detection of unstable contacts, such
as the slippage seen in the InsertFlower task. Integrating tactile
sensing would allow the policy to adapt to these physical
disturbances in real-time, representing a key area for future
improvement.
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